
1.Public Parameters generation
Generate strong prime number p.
Find a generator g in Zp*= {1, 2, 3, …, p-1} using condition.
Strong prime p=2q+1, where q is prime, then g is a generator of ZP* iff
gq ≠ 1 mod p and g2≠ 1 mod p.

Declare Public Parameters to the network PP = (p, g); p= 268435019; g=2;
 2^28-1= 268,435,455
>> int64(2^28-1)
ans = 268435455
>> dec2bin(ans)
ans = 1111 1111 1111 1111 1111 1111 1111

ElGamal Cryptosystem

Public Key CryptoSystems - PKCS

Koliokviumas vyks Lapkričio 10 d., 19:15 per Zoom.

During the MidTerm Exam you must solve 2 problems in
https://imimsociety.net/en/14-cryptography
namely: DH-KAP, MIM Attack.
Register to the site in the similar way as you are registering in eShop.
After that you will receive 10 Eur virtual money to purchase the problems.
Please purchase only one problem at time and after solving it purchase the next one.

Course Works (CW) list is presented in my Google drive

https://docs.google.com/document/d/1yRJ1mwZldIaVXC16Y0dsyQFms7Irg86n/edit?
usp=sharing&ouid=111502255533491874828&rtpof=true&sd=true

Please choose topic and label it by the first letter of surname dot name, e.g. S.Name.
For some of topics the group project realization can take place.
Requirements for CW you can find in
http://crypto.fmf.ktu.lt/xdownload/
in files Course_Work

113_009 PKCS ElGamal-Sig-Enc-KAP

 113_009 PKCS ElGamal-Sig-Enc-KAP Page 1

https://imimsociety.net/en/14-cryptography
https://docs.google.com/document/d/1yRJ1mwZldIaVXC16Y0dsyQFms7Irg86n/edit?usp=sharing&ouid=111502255533491874828&rtpof=true&sd=true
https://docs.google.com/document/d/1yRJ1mwZldIaVXC16Y0dsyQFms7Irg86n/edit?usp=sharing&ouid=111502255533491874828&rtpof=true&sd=true
http://crypto.fmf.ktu.lt/xdownload/

2.Key generation

Randomly choose a private key x with

1 < x < p − 1.

•

Compute a = g x mod p.•

The public key is PuK = a.•

The private key is PrK = x.•

ans = 1111 1111 1111 1111 1111 1111 1111

El-Gamal E-Signature

The ElGamal signature scheme is a digital signature scheme which is based on the difficulty of
computing discrete logarithms.
It was described by Taher ElGamal in 1984. The ElGamal signature algorithm is rarely used in practice.
A variant developed at NSA and known as the Digital Signature Algorithm is much more widely used.
The ElGamal signature scheme allows a third-party to confirm the authenticity of a message sent
over an insecure channel.
From <https://en.wikipedia.org/wiki/ElGamal_signature_scheme>

Certicom

3.Signature creation

Asymmetric Signing - Verification

=Sig(PrKA, m)

V=Ver(PuKA, , m), V{True, False}{1, 0}

Asymmetric Encryption - Decryption
c=Enc(PuKA, m)
m=Dec(PrKA, c)

Ciphertext c

Message m

 113_009 PKCS ElGamal-Sig-Enc-KAP Page 2

https://en.wikipedia.org/wiki/Digital_signature
https://en.wikipedia.org/wiki/Discrete_logarithm
https://en.wikipedia.org/wiki/Taher_ElGamal
https://en.wikipedia.org/wiki/NSA
https://en.wikipedia.org/wiki/Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/ElGamal_signature_scheme

Let message m needs to be encrypted, e.g. m = 111222.

Asymmetric Encryption-Decryption: El-Gamal Encryption-Decryption

3.Signature creation
To sign any finite message M the signer performs the following steps using public parametres PP.

Compute h=H(M).•

Choose a random k such that 1 < k < p− 1 and gcd(k, p − 1) = 1.•
k-1 mod (p-1) computation: k-1 mod (p-1) exists if gcd(k, p − 1) = 1, i.e. k and p-1 are relatively prime.•
k-1 can be found using either Extended Euclidean algorithmt or Euler theorem or …..

>> k_m1=mulinv(k,p-1) % k-1mod (p-1) computation.

Compute r=gk mod p•

Compute s=(h-xr)k-1 mod (p-1) --> h=xr+sk mod (p-1),•

Signature =(r,s)

4.Signature Verification

Bob computes h=H(M).1.

A signature=(r,s) on message M is verified using Public Parameters PP=(p, g) and PuKA=a.

2. Bob verifies if 1<r<p-1 and 1<s<p-1.
3. Bob calculates V1=gh mod p and V2=arrs mod p, and verifies if V1=V2.
The verifier Bob accepts a signature if all conditions are satisfied and rejects it otherwise.

5.Correctness
The algorithm is correct in the sense that a signature generated with the signing algorithm will always
be accepted by the verifier.
The signature generation implies

h=xr+ks mod (p-1)
Hence Fermat's little theorem implies that all operations in the exponent are computed mod (p-1)

ghmod p=g(xr+ks) mod (p-1)mod p = gxrgks = (gx)r(gk)s = arrs mod p

p=268435019; g=2.

 113_009 PKCS ElGamal-Sig-Enc-KAP Page 3

https://en.wikipedia.org/wiki/Greatest_common_divisor
https://en.wikipedia.org/wiki/Greatest_common_divisor
https://en.wikipedia.org/wiki/Fermat%27s_little_theorem

D-x mod p computation using Fermat theorem:
If p is prime, then for any integer a holds ap-1 = 1 mod p.

 113_009 PKCS ElGamal-Sig-Enc-KAP Page 4

Necessity of probabilistic encryption.
Encrypting a message with textbook RSA always yields the same ciphertext, and so we actually
obtain that any deterministic scheme must be insecure for multiple encryptions.

Key agreement protocol using ElGamal encryption

Tavern episode

 113_009 PKCS ElGamal-Sig-Enc-KAP Page 5

 113_009 PKCS ElGamal-Sig-Enc-KAP Page 6

Homomorphic encryption: cloud computation with encrypted data.

Paillier encryption scheme is additively-multiplicative homomorphic and has a potentially nice
applications in blockchain, public procurement, auctions, gamblings and etc.
 Enc(Puk, m1+m2) = c1c2.

 113_009 PKCS ElGamal-Sig-Enc-KAP Page 7

